В погоне за «кротовыми норами»

В России идет разработка астрофизической обсерватории «Спектр-М» («Миллиметрон») — четвертого и последнего космического аппарата из серии «Спектр». Находясь в полутора миллионах километров от Земли и прячась в ее тени, этот мощнейший телескоп пронизывающим взглядом будет наблюдать и изучать самые таинственные явления во Вселенной. Особый интерес вызывает поиск «кротовых нор» — своеобразных порталов между галактиками, существование которых пока рассматривается только в теории.

Космическая обсерватория «Миллиметрон» в каком-то смысле является продолжателем традиций «Спектра-Р» — первого аппарата серии для исследования Вселенной, запущенного на орбиту в 2011 г. и прослужившего семь с половиной лет. И это закономерно, учитывая, что разработчиком обоих проектов является одна организация — Астрокосмический центр (АКЦ) Физического института имени П. Н. Лебедева РАН (ФИАН). Аппараты роднит диа­метр параболической антенны-зеркала, составляющий ни много ни мало десять метров. Однако «Миллиметрон», в отличие от предшественника, будет работать в двух режимах — одиночном и режиме интерферометра — в кооперации с наземными телескопами.

На каждом этапе инструмент обеспечит непревзойденную зоркость. Высочайшая чувствительность во время «сольной» работы будет достигнута благодаря глубокому охлаждению, которое защитит бортовую аппаратуру от «теплового шума». А режим интерферометра предполагает, что вместе с наземными радиотелескопами «Миллиметрон» сможет образовать систему, работающую как одно огромное чуткое электронное око. Эта связка даст возможность получить гигантское угловое разрешение (3.7.10-8 угловых секунд), позволяющее разглядеть даже самые удаленные объекты с невероятно малым угловым размером.

Что касается диапазона исследований, то у «Миллиметрона» он будет беспрецедентно широким — с длиной волны от 70 мкм (тепловое излучение средней длины) до 10 мм (миллиметровые волны), в то время как предшественник вел наблюдения в чистом радиодиапазоне.

В числе отличий и координаты точки назначения: «Спектр-Р» вглядывался в бесконечность, вращаясь вокруг Земли по эллиптической орбите, а «Миллиметрон» для выполнения своей миссии направится в точку Лагранжа L2, находящуюся на прямой линии между Солнцем и нашей планетой на расстоянии 1.5 миллиона километров от Земли в направлении «Солнце — Земля». Орбита в окрестности точки L2 была выбрана главным образом для обеспечения охлаждения до сверхнизких температур.

Из рода «Спектров»

Было запланировано создать четыре обсерватории серии «Спектр» для изучения астрономических объектов в различных диапазонах электромагнитных волн. Первый аппарат — «Спектр-Р» — стартовал в 2011 г. и наблюдал небесные тела в радио­диапазоне. Отправленная на орбиту летом 2019 г. обсерватория «Спектр-РГ» нацелена на построение полной карты Вселенной в рентгеновском диапазоне и сейчас активно работает.

В середине десятилетия эстафету подхватит разрабатываемый аппарат «Спектр-УФ», который будет собирать информацию о далеких объектах в ультрафиолете. Завершит масштабный проект обсерватория «Спектр-М», чьей задачей станет исследование Вселенной в миллиметровом и инфракрасном диапазонах.

Космический цветок

Главное зеркало «Миллиметрона», где отразятся ответы на загадки Вселенной, отправится в космическое путешествие аккуратно сложенным и раскроется как огромный космический цветок сразу по выведении на орбиту. После этого его полет к точке L2 составит еще три месяца. Это время будет использовано для начального охлаждения конструкции.

У обсерватории-цветка будет 24 трансформируемых лепестка и центральное стационарное зеркало диаметром три метра. На каждом лепестке будет установлено по три панели из высокомодульного углепластика с алюминиевым радиоотражающим покрытием. Кинематика раскрытия зеркала будет такой же, как и у обсерватории «Спектр-Р», но устройство раскрытия модернизировано для достижения более высокой точности этого процесса.

«Раскрытие каждого лепестка происходит вокруг своей индивидуальной оси, сориентированной в пространстве таким образом, чтобы избежать взаимного пересечения между соседними лепестками, — объясняет и.о. главного конструктора проекта Евгений Голубев. — При этом вращение всех лепестков синхронизировано между собой специальным механизмом».

Лепестки космического цветка будут зафиксированы по краям специальными защелками. «Цветущий» в холодном космосе, «Миллиметрон» с легкостью будет собирать излучение благодаря большому диаметру и высокоточной поверхности.

Предполагается, что аппарат проработает на орбите десять лет, из которых три — в одиночном режиме. В это время его научная аппаратура для поддержания высоких параметров чувствительности и противодействия тепловым помехам будет сильно охлаждаться. Криомашины замкнутого цикла, использующие в качестве рабочего тела жидкий гелий, обеспечат на чувствительных элементах приборов температуры вплоть до −271.75°С, то есть почти до абсолютного нуля.

 

На шаг впереди

По словам руководителя АКЦ ФИАН, научного руководителя проекта Сергея Лихачева, готовящаяся миссия — «это уровень космического телескопа имени Джеймса Уэбба или даже выше». Хотя российский и американский аппараты рассчитаны на работу в разных диапазонах электромагнитного излучения («Джеймс Уэбб» будет работать в видимом и среднем инфракрасном cпектре, а «Миллиметрон» — в субмиллиметровом и миллиметровом диапазонах), отечественный телескоп будет иметь несомненное преимущество: он позволит изучать объекты, закрытые межзвездной пылью.

В диапазоне, на работу с которым настроен «Джеймс Уэбб», они просто не видны, а «Миллиметрон» сможет достаточно хорошо наблюдать Вселенную и сквозь «завесу» пыли, объяснила ученый секретарь АКЦ ФИАН Татьяна Ларченкова.

Например, активное звездообразование — загадочный и при этом очень «пыльный» процесс. С помощью «Спектра-М» ученые надеются узнать, как именно рождаются звезды и как развивается этот процесс. В отличие от зарубежного коллеги, «Миллиметрон» сможет также проводить быстрые обзоры небольших секторов неба.

Если продолжить сравнение с аппаратом «Спектр-Р», то ученые гораздо шире рассматривают потенциал «Миллиметрона» и в рамках второго этапа, когда он будет действовать как единое целое с наземными телескопами. Дело в том, что «Спектр-Р» работал на гораздо большей длине волны, что было не очень удобно для изучения черных дыр из-за межзвездного рассеивания излучения. При уменьшении длины волны сильно снижается и эффект рассеивания, поэтому «Миллиметрон» сможет рассмотреть весьма далекие области, куда взгляд «Спектра-Р» никогда бы не проник.

По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных континентах, а также «Атакамская большая [антенная] решетка миллиметрового диапазона» (Atacama Large Millimeter Array) — комплекс радиотелескопов, расположенный в чилийской пустыне Атакама.

Кроме того, в рамках проекта возможно сотрудничество с Международной радиоастрономической обсерваторией «Суффа», строящейся в Республике Узбекистан. Особые надежды возлагаются на совместную работу с «Телескопом горизонта событий». Проведенное учеными моделирование показало, что общими усилиями обсерватории смогут получать изображения, качество которых будет в шесть-десять раз лучше, чем то, что «Телескоп горизонта событий» получает сейчас.

Что касается режима одиночной антенны, то прямым предшественником «Миллиметрона» можно считать космический телескоп «Гершель» (запущен в 2009 г.). Однако зарубежный аппарат имел значительно меньший диаметр зеркала — 3.5 метра и более высокую температуру главного зеркала (около −183.15°С), а значит на порядки меньшую чувствительность.

 

Иерархия задач

Характеристики обсерватории и ее будущее «место работы» позволили ученым сформировать амбициозную научную программу. Как отметил Сергей Лихачев, «Миллиметрон» поможет ответить на самые актуальные вопросы в области современной астрофизики и космологии, «начиная от „кротовых нор“ и заканчивая образованием того мира, в котором мы живем».

Основные направления работы: исследования процессов в ранней Вселенной, изучение геометрии пространства-времени вблизи сверхмассивных черных дыр, поиск воды и биомаркеров в нашей галактике.

Татьяна Ларченкова объяснила, что при определении приоритетов важно было выявить задачи, которые до запуска «Миллиметрона» не будут решены другими проектами. Строгая иерархия работ оправдана ограниченным временем работы в режиме активного охлаждения (порядка трех лет), которое даст «Миллиметрону» особую чувствительность в режиме одиночного телескопа. На этом этапе он сможет пробиться взглядом к очень слабым объектам, например, самым первым галактикам.

 

Исследуя жизнь

Что касается астробиологических задач, они присутствовали в концепции проекта с самого начала и со временем все глубже прорабатывались.

«С психологической точки зрения поиск признаков внеземной жизни для человечества представляет наибольший интерес, — замечает Татьяна Ларченкова. — В контексте исследования воды нам интересны ледяные спутники Сатурна и Юпитера. Их наблюдения, в том числе спектральные, нужны, чтобы понять состав их поверхностей, атмосфер, изучать их льды и понять, из чего они состоят. Такие спектральные исследования как раз сможет проводить наша обсерватория».

«Миллиметрон» будет в первую очередь интересоваться такими спутниками планет-­гигантов, как Европа, Ганимед, Титан и Энцелад. Особенно привлекает возможность изучить окрестности Сатурна, к которому в ближайшие годы не планируется направлять автоматические межпланетные миссии с Земли. С помощью телескопа ученые смогут оценить астробиологический потенциал Энцелада и Титана, под поверхностью которых предположительно есть океаны с условиями, пригодными для живых организмов. Анализ химического состава этих миров поможет ученым исследовать особенности взаимодействия океана с поверхностью спутника и ответить на вопрос, есть ли там жизнь.

 

В погоне за «кротовыми норами»

В объектив «Миллиметрона» попадут также центральные области активных ядер галактик. По всей видимости, это сверхмассивные черные дыры, но нельзя исключать, что некоторые из них окажутся «кротовыми норами». «Издали эти объекты могут вести себя очень похоже», — говорит Андрей Андрианов, заведующий лабораторией математических методов обработки астрофизических наблюдений АКЦ ФИАН.

«Благодаря уникальному разрешению и высокой чувствительности, „Миллиметрон“ сможет близко подобраться к горизонту событий любой черной дыры и увидеть, что она собой представляет, — продолжает Татьяна Ларченкова. — Конечно, это возможно только для объектов активных ядер ближайших к нам галактик, в которых есть достаточно массивная центральная черная дыра или „кротовая нора“».

Поиск «кротовых нор» — одна из самых интересных и захватывающих задач «Миллиметрона». В отличие от черных дыр, эти таинственные объекты в космосе наблюдателями пока не обнаружены. На сегодняшний день «кротовая нора» — это гипотетическое явление, существование которого допускается общей теорией относительности. Она предположительно состоит из двух входов, своеобразных порталов, которые могут располагаться на значительном удалении друг от друга, возможно, даже в разных Вселенных. Открытие этих объектов произвело бы революцию в наших представлениях о пространстве и окружающем мире. Благодаря своим параметрам «Миллиметрон» сможет приблизиться к разгадке этой тайны.

 

Статус проекта

Как рассказали Сергей Лихачев и Евгений Голубев, в настоящее время создается ряд опытных образцов различных составных частей космической обсерватории. Один из самых высокотехнологичных образцов — система раскрытия главного зеркала. Помимо раскрытия лепестков и их фиксации в рабочем положении с высокой точностью, она выполняет функции силовой конструкции главного зеркала (для восприятия нагрузок выведения на ракете-носителе). Когда зеркало «Миллиметрона» раскроется, оно должно будет зафиксироваться с погрешностью не более 1 мм — сложнейшая задача, учитывая его габариты. Однако она выполнима: прежде на конструкторско-технологическом макете главного зеркала была достигнута точность раскрытия 0.3 мм.

Как объяснил Евгений Голубев, последнее слово остается за опытным образцом: «А опытный образец уже должен подтвердить это требование для полной снаряженной массы конструкции зеркала. Испытания опытного образца главного зеркала потребуют создания уникальной системы обезвешивания, предназначенной для компенсации влияния силы тяжести на конструкцию в наземных условиях». Помимо испытаний на раскрытие, по его словам, планируется провести тесты по подтверждению работоспособности в криовакуумных условиях, так как конструкция зеркала при эксплуатации претерпевает перепад температур до −300°С и должна сохранить свою форму.

Изготовление составных частей, сборка и испытания модуля полезной научной нагрузки будут проводиться на предприятии «Информационные спутниковые системы» имени академика М. Ф. Решетнёва (входит в Роскосмос), где сейчас и изготавливается экспериментальный образец десятиметровой антенны.

Виктория Колесниченко, Русский космос

roscosmos.ru